2,924 research outputs found

    The design and evaluation of a sonically enhanced tool palette

    Get PDF
    This paper describes an experiment to investigate the effectiveness of adding sound to tool palettes. Palettes have usability problems because users need to see the information they present, but they are often outside the area of visual focus. We used nonspeech sounds called earcons to indicate the current tool and when tool changes occurred so that users could tell what tool they were in wherever they were looking. Results showed a significant reduction in the number of tasks performed with the wrong tool. Therefore, users knew what the current tool was and did not try to perform tasks with the wrong one. All of this was not at the expense of making the tool palettes any more annoying to use

    Sonically-enhanced widgets: comments on Brewster and Clarke, ICAD 1997

    Get PDF
    This paper presents a review of the research surrounding the paper “The Design and Evaluation of a Sonically Enhanced Tool Palette” by Brewster and Clarke from ICAD 1997. A historical perspective is given followed by a discussion of how this work has fed into current developments in the area

    Using non-speech sounds to provide navigation cues

    Get PDF
    This article describes 3 experiments that investigate the possibiity of using structured nonspeech audio messages called earcons to provide navigational cues in a menu hierarchy. A hierarchy of 27 nodes and 4 levels was created with an earcon for each node. Rules were defined for the creation of hierarchical earcons at each node. Participants had to identify their location in the hierarchy by listening to an earcon. Results of the first experiment showed that participants could identify their location with 81.5% accuracy, indicating that earcons were a powerful method of communicating hierarchy information. One proposed use for such navigation cues is in telephone-based interfaces (TBIs) where navigation is a problem. The first experiment did not address the particular problems of earcons in TBIs such as “does the lower quality of sound over the telephone lower recall rates,” “can users remember earcons over a period of time.” and “what effect does training type have on recall?” An experiment was conducted and results showed that sound quality did lower the recall of earcons. However; redesign of the earcons overcame this problem with 73% recalled correctly. Participants could still recall earcons at this level after a week had passed. Training type also affected recall. With personal training participants recalled 73% of the earcons, but with purely textual training results were significantly lower. These results show that earcons can provide good navigation cues for TBIs. The final experiment used compound, rather than hierarchical earcons to represent the hierarchy from the first experiment. Results showed that with sounds constructed in this way participants could recall 97% of the earcons. These experiments have developed our general understanding of earcons. A hierarchy three times larger than any previously created was tested, and this was also the first test of the recall of earcons over time

    Long-Range Interaction between Heterogeneously Charged Membranes

    Get PDF
    Despite their neutrality, surfaces or membranes with equal amounts of positive and negative charge can exhibit long-range electrostatic interactions if the surface charge is heterogeneous; this can happen when the surface charges form finite-size domain structures. These domains can be formed in lipid membranes where the balance of the different ranges of strong but short-ranged hydrophobic interactions and longer-ranged electrostatic repulsion result in a finite, stable domain size. If the domain size is large enough, oppositely charged domains in two opposing surfaces or membranes can be strongly correlated by the elecrostatic interactions; these correlations give rise to an attractive interaction of the two membranes or surfaces over separations on the order of the domain size. We use numerical simulations to demonstrate the existence of strong attractions at separations of tens of nanometers. Large line tensions result in larger domains but also increase the charge density within the domain. This promotes correlations and, as a result, increases the intermembrane attraction. On the other hand, increasing the salt concentration increases both the domain size and degree of domain anticorrelation, but the interactions are ultimately reduced due to increased screening. The result is a decrease in the net attraction as salt concentration is increased

    Haptic feedback in the training of veterinary students

    Get PDF
    This paper reports on an initial study into the use of haptic (or touch) technology in the training of veterinary students. One major problem faced in veterinary education is that animals can be harmed by inexperienced students who are trying to learn the skills they need. The aim of the work described here is to provide haptic models to simulate internal examinations of horses so that students can learn the basic skills required on computer and then transfer to real animals with much less risk of doing them injury

    A toolkit of mechanism and context independent widgets

    Get PDF
    Most human-computer interfaces are designed to run on a static platform (e.g. a workstation with a monitor) in a static environment (e.g. an office). However, with mobile devices becoming ubiquitous and capable of running applications similar to those found on static devices, it is no longer valid to design static interfaces. This paper describes a user-interface architecture which allows interactors to be flexible about the way they are presented. This flexibility is defined by the different input and output mechanisms used. An interactor may use different mechanisms depending upon their suitability in the current context, user preference and the resources available for presentation using that mechanism

    Rheology and Contact Lifetime Distribution in Dense Granular Flows

    Full text link
    We study the rheology and distribution of interparticle contact lifetimes for gravity-driven, dense granular flows of non-cohesive particles down an inclined plane using large-scale, three dimensional, granular dynamics simulations. Rather than observing a large number of long-lived contacts as might be expected for dense flows, brief binary collisions predominate. In the hard particle limit, the rheology conforms to Bagnold scaling, where the shear stress is quadratic in the strain rate. As the particles are made softer, however, we find significant deviations from Bagnold rheology; the material flows more like a viscous fluid. We attribute this change in the collective rheology of the material to subtle changes in the contact lifetime distribution involving the increasing lifetime and number of the long-lived contacts in the softer particle systems.Comment: 4 page

    What disability? I am a leader! Understanding leadership in HE from a disability perspective

    Get PDF
    This article is based on the findings of an externally funded, mixed-methods research project conducted at one English university. This small-scale project aimed to examine leadership, barriers to becoming a leader and the support needed to overcome them, from the perspectives of disabled staff. An online questionnaire was sent to all 66 members of staff who had disclosed their disabled status to the university and 22 responses were received. Twelve participants were then interviewed as two focus groups to discuss their views on leadership and its relation to their role. Six more respondents opted for individual face-to-face/telephone interviews. The findings indicated that over half of the respondents were already engaged in ‘formal’ leadership and even more exercised ‘informal’ leadership. This key finding seems to contradict the under-representation of disabled academics in leadership reported in the literature. Despite their engagement in leadership, disabled staff faced several institutional and personal barriers. The findings suggest that having an impairment per se might not necessarily deter disabled staff from exercising leadership. A number of support strategies are recommended to facilitate their participation in (formal) leadership

    Plug flow and the breakdown of Bagnold scaling in cohesive granular flows

    Full text link
    Cohesive granular media flowing down an inclined plane are studied by discrete element simulations. Previous work on cohesionless granular media demonstrated that within the steady flow regime where gravitational energy is balanced by dissipation arising from intergrain forces, the velocity profile in the flow direction scales with depth in a manner consistent with the predictions of Bagnold. Here we demonstrate that this Bagnold scaling does not hold for the analogous steady-flows in cohesive granular media. We develop a generalization of the Bagnold constitutive relation to account for our observation and speculate as to the underlying physical mechanisms responsible for the different constitutive laws for cohesive and noncohesive granular media.Comment: 8 pages, 10 figure
    corecore